Abstract

ETO (MTG8) was first described due to its involvement in the (8;21) translocation frequently observed in acute myeloid leukemias. In the t(8;21) the AML1 gene on chromosome 21 is fused to ETO on chromosome 8. The resultant hybrid protein is comprised of the DNA binding domain of AML-1 and the majority of ETO. This study examines the subnuclear distributions of ETO, AML-1B and AML-1/ETO proteins fused to green fluorescence protein in living cells using fluorescence microscopy. Further, we identified a 40 amino acid portion of ETO (amino acids 241-280) that was sufficient to cause nuclear import of green fluorescent protein. Mutational analysis demonstrated that lysine 265 and/or arginine 266 were required for nuclear import of ETO, but that the surrounding basic residues were not critical. ETO interacted with the nuclear import proteins importin-alpha and beta in vitro, and mutations in ETO that abolish nuclear localization also abolished the in vitro interaction with importin-alpha and beta. These data suggest that ETO enters the nucleus via an importin-mediated pathway. Additionally, ETO and AML-1/ETO co-localized to punctate nuclear bodies distinct from those containing promyelocytic leukemia protein. Nuclear body formation was dependent upon a region of ETO N-terminal to the nuclear localization signal. Thus, ETO and AML-1/ETO reside in potentially novel subnuclear compartments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call