Abstract

BackgroundThe synthesis of silk protein is controlled by hormones. The expression of the nuclear hormone Bmftz-f1 in the posterior silk gland (PSG) is induced by 20-hydroxyecdysone in vivo and in vitro. However, whether Bmftz-f1 regulates silk protein expression is unknown. MethodsIn our study, western blotting and quantitative polymerase chain reactions were conducted to detect the expression of FTZ-F1 in the PSG. Electrophoretic mobility shift, chromatin immunoprecipitation, far-western blotting, bimolecular fluorescence complementation, and dual luciferase reporter assays were performed to investigate the effect of FTZ-F1 on the fibH promoter. Results(1) The expression of the hormone receptor BmFTZ-F1 was opposite to that of fibH. It was highly expressed in the PSG during the fourth molting stage and the beginning of the fifth instar, and then its expression decreased gradually until it disappeared at the end of the fifth instar and the wandering stage. (2) We identified a FTZ-F1 response element 390bp upstream of the transcription initiation site of the fibH promoter. (3) BmFTZ-F1 interacted with the basic helix-loop-helix transcription factor Bmdimm. (4) BmFTZ-F1 down-regulated fibH promoter activity and counteracted the effect of Bmdimm on fibH expression. ConclusionsIntegrating these results, we conclude that BmFTZ-F1 regulates the transcription of fibH by binding to the FTZ-F1 response element in the fibH promoter and counteracts the effect of Bmdimm on fibH expression. General significanceThese findings provide new insights into the mechanism of regulation of the silk protein gene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.