Abstract

Chlamydomonas reinhardtii is the most powerful photosynthetic eukaryotic unicellular model organism. However, its potential is not fully exploitable since as in most green plants specific targeting of nuclear genes is not routinely possible. Recently, we have shown by repair of an introduced truncated model gene that transformation of Chlamydomonas with single stranded DNA greatly suppresses random integration of the DNA in the genome whereas homologous recombination (HR) is left unchanged. However, endogenous genes still could not be targeted. Here we present optimized transformation conditions that further improved HR and suppressed non-homologous DNA integration (NHI). The improved transformation strategy allowed us now to specifically inactivate in two different Chlamydomonas strains the nuclear PHOT gene, which encodes for the blue light photoreceptor phototropin (PHOT). The option to target moderately expressed Chlamydomonas nuclear genes with high efficiency now further improves the utility of this this alga for basic science and biotechnology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.