Abstract

The experimental data for the screening potential in metals shows evidence of huge enhancements in the nuclear fusion cross section at energies ≤10 keV. These enhancements could imply the possibility of nuclear fusion in local high density clusters in solids. High concentration of Hydrogen isotopes can be found in monovacancies and divacancies in face-centered cubic (fcc) metals such as Ni with densities of ∼6 × 1023 and ∼9 × 1023 atom/cm3, respectively. These monovacancies and divacancies can be excellent candidates for these clusters due to the high density which is an essential parameter in the nuclear fusion reaction rates. This paper discusses the enhancement of cross sections and reactivities for D(t,n)4He and D(d,p)3H reactions, considering the experimental screening potential measured in molecular D2, Ni, Pd, and PdO, and the possibility to use monovacancies and divacancies as possible locations where nuclear fusion reactions could be enhanced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call