Abstract

Arginine methylation involves in manifold cellular processes like signaling, transcription regulation,chromatin remolding, and apoptosis with extensive biology function. During recent years, new members of the family of protein arginine methyltransferases have been increasing, by now there are eleven protein arginine methyltransferases. Protein arginine methyltransferases are classified into two groups. Type I protein arginine methyltransferases catalyze the formation of monomethylarginine and asymmetric dimethylarginine,type Ⅱ enzymes form monomethylarginine and symmetric dimethylarginine. Coactivator- associated arginine methyltransferasel is a nuclear faetor-kB(NF-kB) dependent transcriptional coactivator and functions as a promoter-specific regulator of NF-kB recruitment to chromatin. Coactivator-associated arginine methyltransferasel may activate NF-kB signal transduction pathway by enhancing NF-kB recruitment to cognate sites and initate transcriptional activation of a variety of proinflammatory and immunoregulation genes, which plays critical role in transcription regulation of immune and inflammatory reaction genes. Now it is generally accepted that lung is the major source of NO,plays an important role in NO metabolism,and acts as the major source of NOS inhibitor asymmetric dimethylarginine. Asymmetric dimethylarginine serves as false substrates and competitively inhibits NOS activity, blocking the formation of endogenous NO. As a major source of not only NO but also the NOS inhibitor asymmetric dimethylarginine, the lung likely plays a critical role in the important and delicate balance of arginine-methylarginine-NO. Key words: Arginine methyltransferasel; Nuclear factor-kB

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.