Abstract

Cell cycle reentry has been found during apoptosis of postmitotic neurons under certain pathological conditions. To evaluate whether nuclear factor-kappaB (NF-kappaB) activation promotes cell cycle entry and neuronal apoptosis, we studied the relation among NF-kappaB-mediated cyclin induction, bromodeoxyuridine (BrdU) incorporation, and apoptosis initiation in rat striatal neurons following excitotoxic insult. Intrastriatally injected N-methyl-D-aspartate receptor agonist quinolinic acid (QA, 60 nmol) elicited a rise in cyclin D1 mRNA and protein levels (P<0.05). QA-induced NF-kappaB activation occurred in striatal neurons and nonneuronal cells and partially colocalized with elevated cyclin D1 immunoreactivity and TUNEL-positive nuclei. QA triggered DNA replication as evidenced by BrdU incorporation; some striatal BrdU-positive cells were identified as neurons by colocalization with NeuN. Blockade of NF-kappaB nuclear translocation with the recombinant peptide NF-kappaB SN50 attenuated the QA-induced elevation in cyclin D1 and BrdU incorporation. QA-induced internucleosomal DNA fragmentation was blunted by G(1)/S-phase cell cycle inhibitors. These findings suggest that NF-kappaB activation stimulates cyclin D1 expression and triggers DNA replication in striatal neurons. Excitotoxin-induced neuronal apoptosis may thus result from, at least partially, a failed cell cycle attempt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.