Abstract

Dementia with Lewy bodies (DLB) is the second most common cause of neurodegenerative dementia after Alzheimer's disease (AD). Parkinsonism in DLB is mainly caused by neuronal loss with Lewy bodies (LBs) in the substantia nigra, thereby inducing degeneration of the nigrostriatal dopaminergic pathway similar to that in Parkinson's disease (PD). To clarify the pathogenesis of DLB, it is important to investigate the mechanisms involved in the degenerative process of LB-bearing neurones. Several reports suggest a role for nuclear factor kappa-B (NFkappaB) in the manifestation of neurodegenerative conditions such as AD and PD. The aim of the present study was to investigate whether NFkappaB subunits are involved in the pathogenesis of neurodegeneration in DLB by measuring tyrosine hydroxylase (TH), NFkappaB p65 and p50 protein expression in frontal cortex and substantia nigra pars compacta of DLB and control human brains. An increase, although not statistically significant, in nigral TH expression in DLB cases was observed. There were no differences in the cortical and nigral expression levels of NFkappaB p65 subunit between control and DLB cases. Western blots of the frontal cortex showed no differences in the expression levels of NFkappaB p50 subunit. However, NFkappaB p50 levels were significantly decreased (P < 0.05) in the pars compacta of the substantia nigra in the DLB cases in comparison with controls. The decrease in the expression of the p50 subunit in the substantia nigra of DLB cases achieved in the present study may increase the vulnerability of the dopaminergic neurones to a possible neurotoxic effect of p65 subunit. Thus, normal levels of NFkappaB p65 might be toxic in neurones with a low expression of the NFkappaB p50 subunit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call