Abstract
Interleukin-1beta (IL-1beta) has been shown in numerous studies to increase prostaglandin (PG) output by up-regulating the expression of cyclooxygenase-2 (COX-2), a rate-limiting enzyme in PG synthesis. In this study, we investigated the possible role of the nuclear factor kappa B (NFkappaB) in IL-1beta signaling, leading to the expression of COX-2 in human amnion cell culture. Fetal amnion was obtained following vaginal delivery and digested with collagenase, and the subepithelial (mesenchymal) cells were isolated. Cultures were characterized with antisera to keratin (epithelial cells) and vimentin (mesenchymal cells). Confluent cells were stimulated with human recombinant IL-1beta, and activation of NFkappaB was assessed by measuring changes in the inhibitory protein IkappaB (total IkappaB and phosphorylated IkappaB) using Western blot analysis as well as by nuclear binding of NFkappaB using an electrophoretic mobility shift assay. COX-2 protein levels were determined by Western blot analysis. After 5 min of stimulation with IL-1beta, phosphorylated IkappaB began to appear, 90% of which was degraded within 15 min. This was temporally associated with decreased total IkappaB and increased nuclear NFkappaB DNA-binding activity. In the IL-1beta-treated group, COX-2 protein began to increase after 6 h; this response was time-dependent, with a significant increase until 24 h after IL-1beta stimulation. When NFkappaB translocation was blocked by using SN50 (a cell-permeable inhibitory peptide of NFkappaB translocation), the synthesis of COX-2 protein was inhibited. These results suggest that NFkappaB is involved in the IL-1beta-induced COX-2 expression in the mesenchymal cells of human amnion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.