Abstract
Nuclear factor (NF)-κB signaling is not only important for the immune and inflammatory responses but also for the normal development of epithelial cells, such as those in the skin and tooth. Here, we generated epithelial cell-specific p65-deficient (p65Δepi−/−) mice to analyze the roles of NF-κB signaling in epithelial cell developent. Notably, p65Δepi−/− mice exhibited no abnormalities in their appearance compared to the control (p65flox/flox) littermates. Furthermore, no major changes were observed in the skin, hair growth, and shape and color of the incisors and molars. However, 65 % of p65Δepi−/− mice exhibited corneal thickening after 8 weeks of age, and 30 % of p65Δepi−/− mice exhibited hair growth from the mandibular incisors around 24 weeks of age. No hair growth was observed at 36 and 42 weeks of age. However, micro-computed tomography images revealed a large cavity below the mandibular incisors extending to the root of the incisor. Histological analysis revealed that the cavity was occupied by a connective tissue containing hair-like structures with many dark brown granules that disappeared after melanin bleaching, confirming the presence of hair. Although inflammatory cells were also observed near the eruption site of the incisor teeth of p65Δepi−/− mice, no major disturbance was observed in the arrangement of enamel epithelial cells. Overall, these results highlight the role of p65 in the maintenance of epithelial cell homeostasis during aging.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.