Abstract
We derive the conditions on laser energy and photon number under which a short strong laser pulse excites a collective nuclear mode. We use the Giant Dipole Resonance as a representative example, and a random-matrix description of the fine-structure states and perturbation theory as tools. We identify the relevant observable as the nuclear time-decay function. That function is the Fourier transform of the autocorrelation function of the associated scattering matrix and contains information not otherwise available. We evaluate that function in specific cases and show that it may deviate significantly from an exponential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.