Abstract

A mean field calculation is carried out to obtain the equation of state (EoS) of nuclear matter from a density-dependent M3Y interaction (DDM3Y). The energy per nucleon is minimized to obtain ground state of the symmetric nuclear matter (SNM). The constants of density dependence of the effective interaction are obtained by reproducing the saturation energy per nucleon and the saturation density of SNM. The energy variation of the exchange potential is treated properly in the negative energy domain of nuclear matter. The EoS of SNM, thus obtained, is not only free from the superluminosity problem but also provides excellent estimate of nuclear incompressibility. The EoS of asymmetric nuclear matter is calculated by adding to the isoscalar part, the isovector component of M3Y interaction. The SNM and pure neutron matter EoS are used to calculate the nuclear symmetry energy which is found to be consistent with that extracted from the isospin diffusion in heavy-ion collisions at intermediate energies. The β equilibrium proton fraction calculated from the symmetry energy and related theoretical findings are consistent with the constraints derived from the observations on compact stars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call