Abstract
There is considerable potential for nuclear genomic material in environmental DNA (eDNA) to inform us of population genetic structure within aquatic species. We tested if nuclear allelic composition data sourced from eDNA can resolve fine scale spatial genetic structure of the cichlid fish Astatotilapia calliptera in Lake Masoko, Tanzania. In this ∼35m deep crater lake the species is diverging into two genetically distinguishable ecomorphs, separated by a thermo-oxycline at ∼15m that divides biologically distinct water masses. We quantified population genetic structure along a depth transect using single nucleotide polymorphisms (SNPs) derived from genome sequencing of 530 individuals. This population genetic structure was reflected in a focal set of SNPs that were also reliably amplified from eDNA - with allele frequencies derived from eDNA reflecting those of fish within each depth zone. Thus, by targeting known genetic variation between populations within aquatic eDNA, we measured genetic structure within the focal species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.