Abstract

FLUKA is among the general-purpose codes for the Monte Carlo simulation of radiation transport that are routinely employed to estimate the production of single-event-upsets (SEUs) in commercial static random access memories (SRAMs) exposed to radiation. Earlier studies concerning the production of SEUs in commercial SRAMs under proton irradiation revealed very good agreement between experimental measurements and FLUKA estimates of the SEU production cross section for proton energies above 20-30 MeV. However, at lower proton energies, where the cross section for SEU production in such low-critical-charge components increases drastically, a FLUKA underestimation of up to two orders of magnitude was observed. Preliminary analyses indicated that this underestimation was in great measure due to the lack of nuclear elastic scattering of protons below 10 MeV in FLUKA up to version 4-3.4. To overcome this limitation, a new model for the nuclear elastic scattering of protons has been developed, combining partial-wave analyses and experimental angular distributions. This newly developed model has been included in FLUKA v4-4.0, and leads to an order-of-magnitude improvement in the agreement between FLUKA and experimental cross sections for the production of SEUs in SRAMs under proton irradiation in the 1–10 MeV energy domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.