Abstract
Nuclear existence of epidermal growth factor receptor (EGFR) has been documented for more than two decades. Resistance of cancer to radiotherapy is frequently correlated with elevated EGFR expression, activity, and nuclear translocation. However, the role of nuclear EGFR (nEGFR) in radioresistance of cancers remains elusive. In the current study, we identified a novel nEGFR-associated protein, polynucleotide phosphorylase (PNPase), which possesses 3' to 5' exoribonuclease activity toward c-MYC mRNA. Knockdown of PNPase increased radioresistance. Inactivation or knock-down of EGFR enhanced PNPase-mediated c-MYC mRNA degradation in breast cancer cells, and also increased its radiosensitivity. Interestingly, the association of nEGFR with PNPase and DNA-dependent protein kinase (DNAPK) increased significantly in breast cancer cells after exposure to ionizing radiation (IR). We also demonstrated that DNAPK phosphorylates PNPase at Ser-776, which is critical for its ribonuclease activity. The phospho-mimetic S776D mutant of PNPase impaired its ribonuclease activity whereas the nonphosphorylatable S776A mutant effectively degraded c-MYC mRNA. Here, we uncovered a novel role of nEGFR in radioresistance, and that is, upon ionizing radiation, nEGFR inactivates the ribonuclease activity of PNPase toward c-MYC mRNA through DNAPK-mediated Ser-776 phosphorylation, leading to increase of c-MYC mRNA, which contributes to radioresistance of cancer cells.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.