Abstract

Concurrent neutron Compton scattering (NCS) and neutron diffraction experiments at temperatures between 70 K and 300 K have been performed on proton-conducting hydrated BaZr0.7Ce0.2Y0.1O3−δ (BZCY72) fabricated by spark plasma sintering. A combined neutron data analysis, augmented with density functional theory modelling of lattice dynamics, has enabled, for the first time, a mass-selective appraisal of the combined thermal and nuclear quantum effect on nuclear dynamics and thermodynamic stability of this technologically important proton conducting perovskite oxide. The analysis suggests that the nuclear dynamics in hydrated BZCY72 is a result of a subtle interplay of harmonic, anharmonic and thermal effects, with the increased anharmonic character of the lattice dynamics above the orthorhombic to rhombohedral phase transition at 85 K. The anharmonic effect seems to be most pronounced in the case of oxygen and cerium. The analysis of the proton momentum distribution reveals that the concentration of the hydrogen in the BZCY72 lattice is constant across the orthorhombic to rhombohedral phase transition and further down to the room temperature. Moreover, the average hydrogen concentration obtained from our analysis of the mass-resolved neutron Compton scattering data seems to be commensurate with the total vacancy concentration in the BZCY72 framework. The calculation of the vibrational enthalpy of both phases allows obtaining the value of the enthalpy of the orthorhombic to the rhombohedral phase transition of −3.1 ± 1 kJ mol−1. Finally, our analysis of the nuclear kinetic energy of the proton obtained from NCS and the oxygen-oxygen distance distributions obtained from ND allows to conclude that BZCY72 in both the orthorhombic and rhombohedral phase at 70 K and 100 K respectively falls into the category of the KDP-type crystals where proton is probably under the influence of a double-well potential and forms hydrogen bonds of moderate strength. The obtained results have important ramifications for this technological important material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call