Abstract

Within the highly organized nuclear structure, specific nuclear domains (ND10) are defined by accumulations of proteins that can be interferon-upregulated, implicating ND10 as sites of a nuclear defense mechanism. Compatible with such a mechanism is the deposition of herpesvirus, adenovirus, and papovavirus genomes at the periphery of ND10. However, these DNA viruses begin their transcription at ND10 and consequently initiate replication at these sites, suggesting that viruses have evolved ways to circumvent this potential cellular defense and exploit it. Other ND10-associated proteins belong to ubiquitin-related pathways. These findings, together with the accumulation of various overexpressed cellular and viral proteins, suggest that ND10 function as nuclear dumps or as nuclear depots. Consistent with the recruitment or deposition of various proteins and viral genomes adjacent to ND10, ND10 themselves may only be protein accumulations at specific but as yet undefined nuclear deposition sites. The concept of specific nuclear deposition sites may explain the juxtaposition of various nuclear bodies and allows testable predictions about a potential supramolecular regulatory mechanism whereby proteins are selectively segregated or released by global changes induced in nuclear functions such as viral infections, stress, or hormonal induction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.