Abstract

Nuclear DNA helicase II (NDH II), alternatively named RNA helicase A (RHA), is an F-actin binding protein that is particularly enriched in the nucleolus of mouse cells. Here, we show that the nucleolar localization of NDH II of murine 3T3 cells depended on an ongoing rRNA synthesis. NDH II migrated out of the nucleolus after administration of 0.05 μg/ml actinomycin D, while nucleolin and the upstream binding factor (UBF) remained there. In S phase-arrested mouse cells, NDH II was frequently found at the nucleolar periphery, where it was accompanied by newly synthesized nucleolar RNA. Human NDH II was mainly distributed through the whole nucleoplasm and not enriched in the nucleoli. However, in the human breast carcinoma cell line MCF-7, NDH II was also found at the nucleolar periphery, together with the tumor suppressor protein p53. Both NDH II and p53 were apparently attached to the F-actin-based filamentous network that surrounded the nucleoli. Accordingly, this subnuclear structure was sensitive to F-actin depolymerizing agents. Depolymerization with gelsolin led to a striking accumulation of NDH II in the nucleoli of MCF-7 cells. This effect was abolished by RNase, which extensively released nucleolus-bound NDH II when added together with gelsolin. Taken together, these results support the idea that an actin-based filamentous network may anchor NDH II at the nucleolar periphery for pre-ribosomal RNA processing, ribosome assembly, and/or transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.