Abstract

Sporadic colorectal cancer (CRC) insurgence and progression depend on the activation of Wnt/β-catenin signaling. Dickkopf (DKK)-1 is an extracellular inhibitor of Wnt/β-catenin signaling that also has undefined β-catenin-independent actions. Here we report for the first time that a proportion of DKK-1 locates within the nucleus of healthy small intestine and colon mucosa, and of CRC cells at specific chromatin sites of active transcription. Moreover, we show that DKK-1 regulates several cancer-related genes including the cancer stem cell marker aldehyde dehydrogenase 1A1 (ALDH1A1) and Ral-binding protein 1-associated Eps domain-containing 2 (REPS2), which are involved in detoxification of chemotherapeutic agents. Nuclear DKK-1 expression is lost along CRC progression; however, it remains high in a subset (15%) of CRC patients (n = 699) and associates with decreased progression-free survival (PFS) after chemotherapy administration and overall survival (OS) [adjusted HR, 1.65; 95% confidence interval (CI), 1.23-2.21; P = 0.002)]. Overexpression of ALDH1A1 and REPS2 associates with nuclear DKK-1 expression in tumors and correlates with decreased OS (P = 0.001 and 0.014) and PFS. In summary, our findings demonstrate a novel location of DKK-1 within the cell nucleus and support a role of nuclear DKK-1 as a predictive biomarker of chemoresistance in colorectal cancer.

Highlights

  • Colorectal cancer (CRC) is an important contributor to cancer mortality and morbidity [1]

  • Nuclear DKK-1 expression was detected in enteroendocrine cells at the bottom of the crypts, as revealed by co-expression of chromogranin A (Fig. 1B)

  • We studied the expression of DKK-1 in human colon carcinoma cells both in vitro and in a large cohort of metastatic CRC patients

Read more

Summary

Introduction

Colorectal cancer (CRC) is an important contributor to cancer mortality and morbidity [1]. Despite advances in therapy for CRC patients, approximately 20-45% of those who undergo curative resection subsequently develop tumor recurrence or distant metastasis [2]. Abnormal activation of the Wnt/β-catenin pathway due to mutation of APC, CTNNB1/β-catenin or AXIN genes is the initial event and a driving force of colorectal tumorigenesis [4]. DKK-1 modulates proliferation and survival of cancer cells in which the Wnt/β-catenin pathway is constitutively activated by mutations in genes encoding intracellular pathway components, or independently of β-catenin transcriptional activity [7, 8]. Available data indicate the existence of uncharacterized actions of DKK1 that are independent of the inhibition of Wnt signaling at plasma membrane

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call