Abstract
In this report, we describe the localization of diacylglycerol lipase-α (DAGLα) in nuclei from adult cortical neurons, as assessed by double-immunofluorescence staining of rat brain cortical sections and purified intact nuclei and by western blot analysis of subnuclear fractions. Double-labeling assays using the anti-DAGLα antibody and NeuN combined with Hoechst staining showed that only nuclei of neuronal origin were DAGLα positive. At high resolution, DAGLα-signal displayed a punctate pattern in nuclear subdomains poor in Hoechst's chromatin and lamin B1 staining. In contrast, SC-35- and NeuN-signals (markers of the nuclear speckles) showed a high overlap with DAGLα within specific subdomains of the nuclear matrix. Among the members of the phospholipase C-β (PLCβ) family, PLCβ1, PLCβ2, and PLCβ4 exhibited the same distribution with respect to chromatin, lamin B1, SC-35, and NeuN as that described for DAGLα. Furthermore, by quantifying the basal levels of 2-arachidonoylglycerol (2-AG) by liquid chromatography and mass spectrometry (LC-MS), and by characterizing the pharmacology of its accumulation, we describe the presence of a mechanism for 2-AG production, and its PLCβ/DAGLα-dependent biosynthesis in isolated nuclei. These results extend our knowledge about subcellular distribution of neuronal DAGLα, providing biochemical grounds to hypothesize a role for 2-AG locally produced within the neuronal nucleus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.