Abstract

The hormonal induction of vitellogenesis in insects and in oviparous vertebrates are prime models of gene regulation in eukaryotes. In vertebrates the process is under estrogenic control and normally confined to females, although males can be artificially induced. In locust in contrast, juvenile hormone (JH) is central to fat body development in both males and females, yet the response is strongly sex limited not only for vitellogenin production but also in terms of total protein, DNA and RNA synthesis and nuclear ploidy levels. To differentiate further possible sex and/or JH related developmental aspects in locusts, large-scale nuclear events were examined during normal adult maturation and in animals treated with antiallatropins and JH analogs. Fat body nuclei undergo extensive restructuring during normal development in both sexes. This included progressive nuclear enlargement, accompanied by extensive proliferation of nuclear matrix components and elaboration of complex inclusion bodies (NB). The isolated protein matrix was unusually complex relative to similar structures from vertebrates and the NB were firmly anchored to it. Although matrix proteins were qualitatively similar to those from other sources, as assessed by SDS polyacrylamide gel electrophoresis, several major matrix polypeptides, including lamins A and B, and components >150 kD, fluctuated quantitatively during development and in concert with nuclear enlargement. The number and morphology of the NB were unrelated to sex, but increased in direct proportion to absolute nuclear volumes. All changes were more pronounced in females, where higher ploidy levels, larger nuclei and correspondingly more internal matrix elements occurred. Suppression of JH production by precocene prevented all foregoing nuclear changes, but re-exposure to methoprene rapidly induced normal development. The results are compared to analogous nuclear changes in steroid responsive vertebrate tissues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.