Abstract
BackgroundTUBB8, a crucial gene encoding microtubule protein, plays a pivotal role in cellular processes. Deleterious TUBB8 variants have been shown to significantly hinder oocyte maturation. In this study, we conducted an in vitro investigation using TUBB8 mutant mouse oocytes to elucidate the pathogenic mechanisms of TUBB8 variants in oocyte nuclear and cytoplasmic maturation.MethodsA mutant model was successfully established in mouse oocytes via microinjection to further investigate the effects of four novel discovered TUBB8 mutations on the nuclear and cytoplasmic maturation of mouse oocytes. Immunofluorescence and confocal microscopy were performed to observe the cortical polarity and spindle and of mutant oocytes. Active mitochondrial staining was performed to analyze mitochondrial distribution patterns. Endoplasmic reticulum and Ca2+ staining were conducted to assess ER distribution and cytoplasmic calcium ion concentration in oocytes.ResultsIn mouse oocytes, TUBB8 variants (p.A313V, p.C239W, p.R251Q, and p.G96R) resulted in a reduction of the first polar body extrusion rate, disruption of spindle assembly, and abnormal chromosome distribution. Additionally, these variants induced oocyte organelle abnormalities, including anomalies in mitochondrial redistribution and endoplasmic reticulum stress compared to the wild-type.ConclusionDeleterious TUBB8 variants could disrupt microtubule function, affecting critical processes such as spindle assembly, chromosome distribution, and organelle rearrangement during oocyte meiosis. These disruptions culminate in compromised nuclear-cytoplasmic maturation, consequently giving rise to oocyte maturation defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.