Abstract
Transcription regulatory elements (TREs) have been extensively studied on the biochemical level with respect to their interactions with transcription factors (TFs), other DNA segments, and larger protein complexes. In this review, we describe concepts and preliminary experimental evidence for positional changes of TREs within a dynamic, functional nuclear architecture. We suggest a multilayered shell-like chromatin organization of chromatin domain clusters with increasing chromatin compaction levels from the periphery toward the interior with a decondensed transcriptionally active peripheral layer and compact repressed chromatin typically located in the interior. This model organization of nuclear architecture implies a differential accessibility of TFs to targets located in co-aligned active and inactive nuclear compartments (ANC and INC). It is based on evidence that active, easily accessible chromatin (perichromatin region, PR) lines a network of channels (interchromatin compartment, IC) involved in nuclear import-export functions. The IC and PR constitute the ANC, whereas transcriptionally noncompetent chromatin with higher compactness is part of the likely less accessible INC. Preliminary experimental evidence shows an enrichment of active TREs in the ANC and of inactive TREs in the INC suggesting positional changes of TREs between the ANC and INC depending on changes in their functional state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.