Abstract

In the protozoan parasite Trypanosoma cruzi, as in other trypanosomatids, transcription of protein coding genes occurs in a constitutive fashion, producing large polycistronic transcription units. These units are composed of non-functionally related genes which are pervasively processed to yield each mRNA. Therefore, post-transcriptional processes are crucial to regulate gene expression. Considering that nuclear compartmentalization could contribute to gene expression regulation, we comparatively studied the nuclear, cytoplasmic and whole cell transcriptomes of the non-infective epimastigote stage of T. cruzi, using RNA-Seq. We found that the cytoplasmic transcriptome tightly correlates with the whole cell transcriptome and both equally correlate with the proteome. Nonetheless, 1,200 transcripts showed differential abundance between the nuclear and cytoplasmic fractions. For the genes with transcript content augmented in the nucleus, significant structural and compositional differences were found. The analysis of the reported epimastigote translatome and proteome, revealed scarce ribosome footprints and encoded proteins for them. Ontology analyses unveiled that many of these genes are distinctive of other parasite life-cycle stages. Finally, the relocalization of transcript abundance in the metacyclic trypomastigote infective stage was confirmed for specific genes. While gene expression is strongly dependent on transcript steady-state level, we here highlight the importance of the distribution of transcripts abundance between compartments in T. cruzi. Particularly, we show that nuclear compartmentation is playing an active role in the developmental stage determination preventing off-stage expression.

Highlights

  • Chagas’ disease is caused by the protozoan parasite Trypanosoma cruzi (Kinetoplastida, Trypanosomatidae), which is transmitted to humans by diverse species of the Reduvidae bug family (Chagas, 1909)

  • We found that the use of the cytoplasmic transcriptome does not significantly improve the estimation of protein abundance obtained from whole cell parasite transcriptome

  • We found that the transcripts enriched in the cytoplasmic fraction correspond to genes expressed in the epimastigote stage, while the ones enriched in the nucleus are distinctive of other life cycle stages

Read more

Summary

Introduction

Chagas’ disease is caused by the protozoan parasite Trypanosoma cruzi (Kinetoplastida, Trypanosomatidae), which is transmitted to humans by diverse species of the Reduvidae bug family (Chagas, 1909). The infected insect releases the parasite metacyclic trypomastigote forms with its feces while feeding host blood, entering the host through the wound area. T. cruzi Nucleus-Cytoplasm Transcript Distribution intracellular amastigote forms. The latter multiply intracellularly and differentiate into bloodstream trypomastigotes, which are released into the circulation and infect cells from a variety of tissues, differentiating inside them into amastigotes. Vector-borne transmission occurs in Central and South America but, since the parasite can be transmitted by contaminated food, from mother to child and through contaminated blood or organ donations, Chagas’ disease has spread to other continents (WHO, 2015)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call