Abstract

After two major nuclear power plant accidents in Chernobyl (1986) and Fukushima (2011), one of the main requirements for the nuclear power engineering is the safety of the nuclear reactors in operation, as well as new nuclear power plants of the fourth generation, which are being developed now. One of such requirements is presence of the so-called “inherent safety” mechanism, which renders the uncontrolled reactor runaway impossible under any conditions, moreover, the implementation of such a mechanism should be ensured on the level of physical principles embedded in the reactor design. Another important problem of the nuclear power engineering is the need of the transition to the large-scale use of the fast-neutron breeder reactors, with which it would be possible to set up expanded reproduction of the nuclear fuel and by that means solve the problem of supplying humanity with relatively cheap energy for thousands of years. Moreover, at present an unresolved problem is the disposal of spent nuclear fuel containing radioactive nuclides with long half-lives, which presents a long-term danger to the ecology. One of the promising conceptions of the fast-neutron breeder reactor, which can, in the case of successful implementation, partially or even entirely solve the problems of the nuclear power engineering mentioned above, is the reactor that operates in the nuclear burning wave mode, which is also known as “Traveling wave reactor”, CANDLE and by some other names. This paper presents a short review of the main theoretical approaches used for description of such a physical phenomenon as slow nuclear burning (deflagration) wave in the neutron multiplication medium initially composed of the fertile material 238U or 232Th. A comparative analysis of the possibilities of different mathematical models for describing this phenomenon is performed, both for those based on the deterministic approach (i.e. solving neutron transport equations) and for models that use Monte Carlo methods. The main merits of the fast breeder reactor, working in the nuclear burning wave mode, and problems related to the practical realization of the considered concept are discussed.

Highlights

  • After two major nuclear power plant accidents in Chernobyl (1986) and Fukushima (2011), one of the main requirements for the nuclear power engineering is the safety of the nuclear reactors in operation, as well as new nuclear power plants of the fourth generation, which are being developed

  • Another important problem of the nuclear power engineering is the need of the transition to the large-scale use of the fast-neutron breeder reactors, with which it would be possible to set up expanded reproduction of the nuclear fuel and by that means solve the problem of supplying humanity with relatively cheap energy for thousands of years

  • This article provides an overview of a number of the most significant works on the problem of a nuclear burning wave reactor

Read more

Summary

NUCLEAR BURNING WAVE CONCEPT AND THEORETICAL APPROACHES FOR ITS DESCRIPTION

IAEA has formulated general requirements for the nuclear power plants of new generation, where one of the most important requirements is to ensure the so-called “inherent safety” property, which would exclude the possibility of uncontrolled reactor runaway owing to any of the internal or external influences, including operator’s mistake Another important problem in the nuclear energy is the limited natural resources of 235U, which is the main component of nuclear fuel of the thermal nuclear reactors, which are a majority among the 449 working power plants and those 54 that are being built. The main merits of the NBW reactor and problems related to its implementation are discussed

NUCLEAR BURNING WAVE CONCEPT
THEORETICAL APPROACHES FOR NBW DESCRIPTION
Findings
CONCLUSIONS

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.