Abstract
A new branch was induced on the side wall of fern protonema by cell centrifugation and subsequent polarized red light irradiation after the induction of cell division under white light. Nuclear behavior during the branch formation was analyzed. Immediately after cell division, the two daughter nuclei moved away from the division site in both red and dark conditions. Under continuous irradiation with polarized red light, cell swelling occurred as an early step of branching near the cell dividing wall, even though the nucleus was localized far from the branching site at the beginning of the swelling. After a new branch started to grow, the nucleus returned to the branching site and moved into the new branch from its basipetal end. When a protonema incubated in the dark was centrifuged again acropetally or basipetally just before the irradiation of polarized red light, the rate of apical growth or branch formation was increased, respectively. Moreover, growth of a branched protonema was altered from its former apex or from the branch again by dislocating the nucleus acropetally or basipetally by centrifugation, respectively. These facts suggest that the nucleus has no polarity physiologically, i.e. head and tail, namely either end of the spindle-shaped nucleus can be the nuclear front in a tip-growing protonema.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.