Abstract

Reactions involving radioactive nuclei play an important role in explosive stellar events such as novae, supernovae, and X-ray bursts. The development of accelerated, proton-rich radioactive ion beams provides a tool for directly studying many of the reactions that fuel explosive hydrogen burning. The experimental nuclear astrophysics program at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory is centered on absolute cross section measurements of these reactions with radioactive ion beams. Beams of 17F and 18F, important nuclei in the hot-CNO cycle, are currently under development at HRIBF. Progress in the production of intense radioactive fluorine beams is reported. The Daresbury Recoil Separator (DRS) has been installed at HRIBF as the primary experimental station for nuclear astrophysics experiments. The DRS will be used to measure reactions in inverse kinematics with the techniques of direct recoil detection, delayed-activity recoil detection, and recoil-gamma coincidence measurements. The first astrophysics experiments to be performed at HRIBF, and the application of the recoil separator in these measurements, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.