Abstract

A high-temperature, gas-cooled reactor (HTGR) is proposed as a tritium production device that has the potential to produce a large amount of tritium using the 6Li(n,α)T reaction without major changes to the original reactor core design. In an HTGR design, generally, boron is loaded into the core as a burnable poison to suppress excess reactivity. In this study, lithium is loaded into the HTGR core aiming to produce thermal energy and tritium simultaneously and is loaded instead of boron as a burnable poison. The nuclear characteristics and fuel temperature were analyzed to confirm the nuclear and thermal feasibility of a lithium-loaded HTGR. It was shown that the analysis results satisfied the design requirements and hence the nuclear and thermal feasibility was confirmed for a lithium-loaded HTGR that produces thermal energy and tritium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call