Abstract

PI4K230, an isoform of phosphatidylinositol 4-kinase, known primarily as a cytoplasmic membrane-bound enzyme, was detected recently also in the nucleolus of several cells. Here we provide mechanistic insight on the targeting function of its putative nuclear localization signal (NLS) sequences using molecular modeling, digitonin-permeabilized HeLa cells and binding to various importins. The synthetic sequence 916NFNHIHKRIRRVADKYLSG 934 comprising a putative monopartite NLS (NLS1), targeted covalently bound fluorescent BSA to the nucleoplasm via classical importin α/β mechanism employing importins α1 and α3 but not α5. This transport was inhibited by wheat germ agglutinin and GTPγS. The sequence 1414SKKTNRGSQLHKYYMKRRTL 1433, a putative bipartite NLS (NLS2) proved ineffective in nuclear targeting if conjugated to fluorescently labeled BSA. Nonetheless, NLS2 or either of its basic clusters directed to the nucleolus soybean trypsin inhibitor that can pass the nuclear pore complex passively; moreover, an expressed 58 kDa fragment of PI4K230 (AA1166–1667) comprising NLS2 was also imported into the nucleus by import factors of reticulocyte lysate or by importin α1/β or α3/β complexes and localized to the nucleolus. We conclude that the putative bipartite NLS itself is a nucleolar targeting signal, and for nuclear import PI4K230 requires a larger sequence around it or, alternatively, the monopartite NLS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call