Abstract

Heavy ion activation has been studied as a method for determining hydrogen. The reactions used [e.g.1H(7Li, n)7Be] are the “inverse” of well known reactions [e.g.7Li(p, n)7Be]. Nuclear activation parameters for the ion beams of interest (7Li2+,10B2+) have been studied. The analytical feasibility is demonstrated with the determination of hydrogen in titanium at the 100 and 30 ppm levels with relative precisions of 8 to 10%. Detection limits in titanium are in the 0.1 to 0.5 ppm range. Heavy ion bombardment is also accompanied by the emission of characteristic X-rays (“atomic” activation). The parameters governing X-ray emission and background production have been investigated. Experimental K and L X-ray yields from thick targets have been measured for many elements excited by On+ beams of 0.5 to 7 MeV/amu and Kr7+ beams of 0.5 to 1 MeV/amu. The simultaneous determination of trace elements at levels of 10 to several 100 ppm in microsamples (∼10−5 g) is demonstrated on biological specimens. K and L X-ray yields and corresponding detection limits have also been measured with the7Li2+ and10B2+ beams used for the nuclear activation of hydrogen. With these beams (∼6 MeV/amu) simultaneous nuclear and atomic activation is possible, yielding an unusual multielement trace analysis capability covering hydrogen and medium and high Z elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.