Abstract
Abstract The Divertor Plasma Facing Components (PFCs) of a fusion reactor are the most loaded components in terms of high heat fluxes, which, combined with high neutron irradiation, can severely compromise their thermo-mechanical and physical properties as well as their heat removal capacity. Therefore, neutronic assessment plays a key role in the design of these critical components. The aim of this work is to perform a dedicated nuclear analysis for the European DEMO divertor PFCs placed on the vertical targets, aimed to provide significant outcomes in the PFCs selection concept. In particular, the present assessment is devoted to the reference ITER-like configuration under study within the EUROfusion WPDIV-PPPT programme. Three-dimensional neutronics analyses have been performed with the MCNP5 Monte Carlo code. This work presents detailed neutronics results with heterogeneous materials constitution and actual geometry of the PFC concept. High resolution data on the nuclear heating density and neutron damage of the ITER-like PFCs placed on the divertor vertical targets, including helium production, assessed for first time for the latest DEMO design, are presented and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.