Abstract

During studies comparing 125I-bFGF internalization between endothelial cells and other cell types, we found, unexpectedly, internalization and nuclear translocation of exogenously added 125I-bFGF in two cell lines: Chinese hamster ovary cells (CHO) and rat L6 myoblasts. These cell lines were previously reported to be devoid of FGF receptors. Furthermore, CHO cells showed a weak mitogenic response to added bFGF, while L6 cells were mitogenically unresponsive. By comparison, coronary venular endothelial cells (CVEC), BALB/c 3T3 fibroblasts, and BHK-21 cells, demonstrated internalization and nuclear translocation of added 125I-bFGF, and mitogenic responsiveness to the growth factor. Insulin alone stimulated DNA synthesis in all cell types, yet augmented bFGF-dependent DNA synthesis only in CVEC, 3T3, and BHK. All five cell types expressed FGF receptors as assessed by covalent crosslinking with 125I-bFGF and immunoblotting with anti-FGF receptor antibodies. Differing rates of cytoplasmic and nuclear accumulation of 125I-bFGF and partial inhibition of internalization by pretreatment of CVEC with chlorate support a recent model that bFGF can internalize by two mechanisms. Insulin did not significantly affect 125I-bFGF internalization or metabolism in any cell type. bFGF treatment resulted in weak inhibition of RNA synthesis in L6 cells. bFGF appears firmly bound to the nuclear matrix as little nuclear-bound 125I-bFGF in CVEC is released by DNAse I or RNAse A digestion, while washes with 0.5 M NaCl result in partial release. Nuclear bFGF may thus be involved in regulation of nuclear events (e.g., gene transcription and/or DNA replication).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call