Abstract

Nuclear beta-catenin plays crucial roles in the establishment of the embryonic axis and formation of mesendoderm tissues in ascidians and other animals. However, the cue responsible for nuclear accumulation of beta-catenin in the vegetal hemisphere is still unknown in ascidians. Here, we investigated the roles of Wnt5alpha and Dsh in the nuclear accumulation of beta-catenin and activation of its downstream genes in the ascidian Halocynthia roretzi. Wnt5alpha knockdown embryos lost nuclear accumulation of beta-catenin at the 64-cell stage but not at the 32-cell stage, and expression of Hr-lim, one of the targets of beta-catenin, was impaired in the anterior region of the embryo. Zygotic Wnt5alpha expression in the anterior-vegetal blastomeres was primarily responsible for these defects. Dsh knockdown showed no effect on nuclear localization of beta-catenin, but inhibited Hr-lim expression in the posterior region. These results suggest that maintenance of nuclear Hr-beta-catenin after the 64-cell stage is regulated by zygotic Hr-Wnt5alpha, and that expression of its target genes is modulated by both Hr-Wnt5alpha and Hr-Dsh. Our results also highlight the importance of nuclear accumulation of beta-catenin up to the 32-cell stage through a still unclarified mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.