Abstract

A new five-finger robot hand (NTU hand) with seventeen degrees of freedom (DOF) is developed in this paper. In contrast to traditional tendon-driven robots, the NTU hand has an uncoupled configuration that each finger and joint are all individually driven. Since all actuators, mechanical parts and sensors are packed on the hand, the size of NTU hand is almost the same as a human hand. Such compact design makes the hand easily adapt to the industrial robot arm and the prosthetic applications. Based on the mechanical structure of the NTU hand, the direct and inverse kinematics are developed. In addition, computer simulation with three-dimension graphics is built to evaluate the manipulable range of the NTU hand. From the simulation, the relationship between the hand and the grasped object in a specific point of view can be obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call