Abstract
Accumulating clinic evidences have demonstrated that the microbes residing in human bodies play a significantly important role in the formation, development, and progression of various complex human diseases. Identifying latent related microbes for disease could provide insight into human disease mechanisms and promote disease prevention, diagnosis, and treatment. In this paper, we first construct a heterogeneous network by connecting the disease similarity network and the microbe similarity network through known microbe-disease association network, and then develop a novel computational model to predict human microbe-disease associations based on random walk by integrating network topological similarity (NTSHMDA). Specifically, each microbe-disease association pair is regarded as a distinct relationship level and, thus, assigned different weights based on network topological similarity. The experimental results show that NTSHMDA outperforms some state-of-the-art methods with average AUCs of 0.9070, 0.8896 ± 0.0038 in the frameworks of Leave-one-out cross validation and 5-fold cross validation, respectively. In case studies, 9, 18, 38 and 9, 18, 45 out of top-10, 20, 50 candidate microbes are verified by recently published literatures for asthma and inflammatory bowel disease, respectively. In conclusion, NTSHMDA has potential ability to identify novel disease-microbe associations and can also provide valuable information for drug discovery and biological researches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.