Abstract

BackgroundExcessive manganese (Mn) exposure has been linked to neurotoxicity, cognitive impairments. Neurotrophic Receptor Kinase 1 (NTRK1) encodes Tropomyosin kinase A (TrkA), a neurotrophic receptor, as a mediator of neuron differentiation and survival. Insulin-like growth factor 2 (IGF2), a pivotal member of the insulin gene family, plays a crucial role in brain development and neuroprotection. Despite this knowledge, the precise mechanisms through which NTRK1 and IGF2 influence cell responses to Mn-induced neuronal damage remain elusive. MethodsCell apoptosis was assessed using CCK8, TUNEL staining, and Western blot analysis of cleaved Caspase-3. Lentiviral vectors facilitated NTRK1 overexpression, while small interfering RNAs (siRNAs) facilitated IGF2 knockdown. Real-time Quantitative PCR (qPCR) determined gene expression levels, while Western blotting measured protein expression. ResultsThe study reveals that NTRK1 inhibits MnCl2-induced apoptosis in SH-SY5Y cells. NTRK1 overexpression significantly upregulated IGF2 expression, and subsequent siRNA-IGF2 experiments confirmed IGF2's pivotal role in NTRK1-mediated neuroprotection. Notably, the study identifies that NTRK1 regulates the expression of IGF2 in the neuroprotective mechanism with the involvement of ER stress pathways. DiscussionThe study reveals NTRK1's neuroprotective role via IGF2 against Mn-induced neurotoxicity and ER stress modulation in SH-SY5Y cells. These findings offer insights into potential therapies for neurodegenerative disorders related to Mn exposure and NTRK1 dysfunction, driving future research in this domain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call