Abstract
Missing traffic data imputation is an important step in the intelligent transportation systems. Low rank approximation is an important method for the missing traffic data imputation, especially the low rank matrix/tensor completion. However, the low-rank matrix completion has a huge time cost and the low-rank tensor completion cannot fully extract the information and maintain non-negativity. Therefore, we propose a novel non-negative temporal dimension preserved tensor completion (NT-DPTC) model with ideas: a) proposing a novel dimension preserved (DP) tensor decomposition method, which decomposes a tensor into three latent factor tensors to fully extract the intrinsic feature, b) using a Sigmoid mapper for releasing non-negative constraint from the training process and increasing flexibility, c) exploiting temporal constrains and AdamW schemes for obtaining a higher accuracy and faster convergence. Experiments on four industrial application scenarios highlight the superiority of our proposed model when compared with the existing state-of-the-art models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.