Abstract

Studies have revealed that microbes have an important effect on numerous physiological processes, and further research on the links between diseases and microbes is significant. Given that laboratory methods are expensive and not optimized, computational models are increasingly used for discovering disease-related microbes. Here, a new neighbor approach based on two-tier Bi-Random Walk is proposed for potential disease-related microbes, known as NTBiRW. In this method, the first step is to construct multiple microbe similarities and disease similarities. Then, three kinds of microbe/disease similarity are integrated through two-tier Bi-Random Walk to obtain the final integrated microbe/disease similarity network with different weights. Finally, Weighted K Nearest Known Neighbors (WKNKN) is used for prediction based on the final similarity network. In addition, leave-one-out cross-validation (LOOCV) and 5-fold cross-validation (5-fold CV) are applied for evaluating the performance of NTBiRW. Multiple evaluating indicators are taken to show the performance from multiple perspectives. And most of the evaluation index values of NTBiRW are better than those of the compared methods. Moreover, in case studies on atopic dermatitis and psoriasis, most of the first 10 candidates in the final result can be proven. This also demonstrates the capability of NTBiRW for discovering new associations. Therefore, this method can contribute to the discovery of disease-related microbes and thus offer new thoughts for further understanding the pathogenesis of diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.