Abstract

BackgroundPlatelet aggregation is one of the most important factors in the development of thrombotic disorders which plays a central role in thrombosis (clot formation). Prophylaxis and treatment of arterial thrombosis are achieved using anti-platelet drugs. In this study, a series of novel substituted indole carbohydrazide was synthesized and evaluated for anti-platelet aggregation activity induced by adenosine diphosphate (ADP), arachidonic acid (AA) and collagen.MethodsOur synthetic route started from methyl 1H-indole-3-carboxylate (1) and ethyl 1H-indole-2-carboxylate (4) which were reacted with hydrazine monohydrate 99%. The aldol condensation of the later compound with aromatic aldehydes led to the formation of the title compounds. Sixteen indole acylhydrazone derivatives, 3d-m and 6d-i were tested for anti-platelet aggregation activity induced by adenosine diphosphate (ADP), arachidonic acid (AA) and collagen.ResultsAmong the synthesized compounds, 6g and 6h with 100% inhibition, proved to be the most potent derivatives of the 2-substituted indole on platelet aggregation induced by AA and collagen, respectively. In 3-substituted indole 3m with 100% inhibition and 3f and 3i caused 97% inhibition on platelet aggregation induced by collagen and AA, respectively.ConclusionIn this study, compounds 6g, 6h, 3m, 3f and 3i showed better inhibition on platelet aggregation induced by AA and collagen among the title compounds. Quantitative structure–activity relationship (QSAR) analysis between the structural parameters of the investigated derivatives and their antiplatelet aggregation activity was performed with various molecular descriptors but, analysis of the physicochemical parameters doesn’t show a significant correlation between the observed activities and general molecular parameters of the synthesized derivatives. Although, due to the existence of several receptors on the platelets surface which are responsible for controlling the platelet aggregation, the investigated compounds in the present study may exert their activities through binding to more than one of these receptors and therefore no straight forward SAR could be obtained for them.

Highlights

  • Platelet aggregation is one of the most important factors in the development of thrombotic disorders which plays a central role in thrombosis

  • Endogenous agonists such as arachidonic acid (AA), adenosine 5′-diphosphate (ADP) that acts on purinergic receptors on the platelet-known as P2Y receptors, thromboxane A2 (TxA2), thrombin, platelet activating factor (PAF), epinephrine (EPN) and collagen are among potent agonists that initiate the formation of stable platelet aggregates [6,7,8]

  • Molecular mass of all the derivatives was determined by Electronspray ionization mass spectrometry (ESI–MS) as M + 1 and/or M + 23 relating to hydrogen and sodium adducts of the intact molecules, respectively

Read more

Summary

Introduction

Platelet aggregation is one of the most important factors in the development of thrombotic disorders which plays a central role in thrombosis (clot formation). Platelets play the major role in the pathogenesis of thromboembolic disorders and activation of the platelets by complex biochemical pathways and mediators is the primary step in this process [4,5]. Endogenous agonists such as arachidonic acid (AA), adenosine 5′-diphosphate (ADP) that acts on purinergic receptors on the platelet-known as P2Y receptors, thromboxane A2 (TxA2), thrombin, platelet activating factor (PAF), epinephrine (EPN) and collagen are among potent agonists that initiate the formation of stable platelet aggregates [6,7,8]. Considering the current situation, pursuit of finding novel scaffolds as new antiplatelet aggregation drugs which are more effective and safer with fewer side effects is very important [10]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call