Abstract
N-substituted benzamides are compounds that have recently been reported to inhibit nuclear factor-κB (NF-κB) activity and induce apoptosis in a pre-B cell line. In this study, we focused on the effects of N-substituted benzamides on transcriptional regulation in Jurkat T cells. We used a model system where the cells can be stimulated either through TCR/CD28 or by treatment of the cells with PMA and ionomycin to induce transcription factors typical for T lymphocyte activation. Treatment of the Jurkat cells with procainamide did not influence the transcription factor profile of stimulated cells, while treatment with a derivative having an acetyl group in position 4 of the aromatic ring inhibited NF-κB and nuclear factor of activated T cells (NFAT) activity. Declopramide, which contains a chloride in position 3 of the aromatic ring, was inactive in this system, whereas also the acetylated derivative of this compound inhibited NF-κB and NFAT activity. In contrast, the transcriptional activity and nuclear expression of activator protein 1 induced by TCR/CD28 stimulation or PMA and ionomycin treatment was enhanced by the acetylated variants of the N-substituted benzamides. Finally, we investigated the effect of N-substituted benzamides on intact promoters for two genes central in immune regulation; the CD40 ligand (CD40L) and IL-2 promoters. The transcriptional activity of the CD40L promoter as well as surface expression of the CD40L induced by signaling through TCR/CD28 was inhibited by addition of acetylated N-substituted benzamides, while the transcriptional activity of the IL-2 promoter was enhanced. Taken together, these data indicate that derivatives of N-substituted benzamides are potential drug candidates for quantitative as well as qualitative modulation of immune functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.