Abstract
The effects of dependence on temperature of the viscosity and electric conductivity, Reynolds number and particle concentration on the unsteady MHD flow and heat transfer of a dusty, electrically conducting fluid between parallel plates in the presence of an external uniform magnetic field have been investigated using the network simulation method (NSM) and the electric circuit simulation program Pspice. The fluid is acted upon by a constant pressure gradient and an external uniform magnetic field perpendicular is applied to the plates. We solved the steady-state and transient problems of flow and heat transfer for both the fluid and dust particles. With this method, only discretization of the spatial co-ordinates is necessary, while time remains as a real continuous variable. Velocity and temperature are studied for different values of the viscosity and magnetic field parameters and for different particle concentration and upper wall velocity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.