Abstract
With the advancements in biomedical imaging applications, it becomes more important to provide potential results for searching the biomedical imaging data. During the health emergency, tremors require efficient results at rapid speed to provide results to spatial queries using the Web. An efficient biomedical search engine can obtain the significant search intention and return additional important contents in which users have already indicated some interest. The development of biomedical search engines is still an open area of research. Recently, many researchers have utilized various deep-learning models to improve the performance of biomedical search engines. However, the existing deep-learning-based biomedical search engines suffer from the overfitting and hyperparameter tuning problems. Therefore, in this paper, a nondominated-sorting-genetic-algorithm-III- (NSGA-III-) based deep-learning model is proposed for biomedical search engines. Initially, the hyperparameters of the proposed deep-learning model are obtained using the NSGA-III. Thereafter, the proposed deep-learning model is trained by using the tuned parameters. Finally, the proposed model is validated on the testing dataset. Comparative analysis reveals that the proposed model outperforms the competitive biomedical search engine models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.