Abstract

Wireless sensor networks (WSNs) have a large number of existing applications and is continuously increasing. Thus it is envisioned that WSN will become an integral part of our life in the near future. Direct propagation, chain formation, cluster creation are various techniques by which data is communicated by sensor nodes to the sink. It has been proved that Clustering is an efficient and scalable method to utilize the energy of sensor nodes efficiently. Optimal election of cluster heads is an NP (non deterministic polynomial time)-Hard problem. In our proposed work, a multi-objective optimization algorithm, non dominated sorting genetic algorithm-II based clustering in wireless sensor networks has been proposed. Energy conservation, network lifetime, coverage and load balancing are the four conflicting objective functions used. Our proposed algorithm handles all of these multiple objectives simultaneously. To reduce the computational complexity of the algorithm, efficient non-dominated level update mechanism for sorting has been used, which eliminates the need of applying non dominated sorting from scratch every time. The algorithm returns a solution set consisting of multiple non dominated solutions, wherein every solution is a best solution according to some objective function, in a single run, from which any solution can be chosen based on user preferences. According to our simulation carried on MATLAB, the proposed approach outperforms the established clustering algorithms in terms of network characteristics such as network lifetime, energy consumption and number of packets received.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.