Abstract

Scale deposition can damage equipment in the oil & gas production industry. Hence, the reliable and accurate prediction of the scale deposition rate is critical for production availability. In this study, we consider the problem of predicting the scale deposition rate, providing an indication of the associated prediction uncertainty. We tackle the problem using an empirical modeling approach, based on experimental data. Specifically, we implement a multi-objective genetic algorithm (namely, non-dominated sorting genetic algorithm–II (NSGA-II)) to train a neural network (NN) (i.e. to find its parameters, that is its weights and biases) to provide the prediction intervals (PIs) of the scale deposition rate. The PIs are optimized both in terms of accuracy (coverage probability) and dimension (width). We perform k-fold cross-validation to guide the choice of the NN structure (i.e. the number of hidden neurons). We use hypervolume indicator metric to evaluate the Pareto fronts in the validation step. A case study is considered, with regards to a set of experimental observations: the NSGA-II-trained neural network is shown capable of providing PIs with both high coverage and small width.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.