Abstract

The use of conventional gadolinium(Gd)-based contrast agents in magnetic resonance imaging (MRI) poses a significant risk of Nephrogenic Systemic Fibrosis (NSF) syndrome in patients with impaired renal function (grades 4 and 5). To address this issue, a new study has introduced a novel metabolic Gadolinium oxide nanoparticle (Gd2O3 NPs) coated with β-cyclodextrin (βCD). The study aims to investigate NSF syndrome by quantifying tissue Gd deposition biodistribution in renal impairment rats using MR molecular imaging. This is the first study of its kind to use this approach.A group of 20 rats were divided into four groups, each containing five rats that underwent 5/6 nephrectomy. The rats received 12 intravenous injections of a novel homemade synthesized gadolinium oxide polycyclodextrin (Gd2O3@PCD) at a dose of 0.1 mmol/kg, conventional contrast agents (CAs) drugs of Omniscan (Gd-DTPA-BMA) and Dotarem (Gd-DOTA), at a dose of 2.5 mmol/kg, and 250 μl saline for two injections per week during six weeks. T1-weighted MR imaging was performed before the injections and once a week for six weeks to quantify Gd deposition in four different organs (skin, liver, heart, and lung) in rats using inductively coupled plasma mass spectrometry (ICP-MS). The relationship between Signal-to-Noise Ratio (SNR) and biodistribution of Gd deposition due to NSF-induced syndrome was also calculated.The results of the study showed that the Gd concentrations in tissues were significantly higher in the Gd2O3@PCD group compared to the other groups, without any significant histopathological changes (P < 0.05). In the Gd2O3@PCD group, Gd was mainly deposited in the skin, followed by the liver, lung, and heart, without any symptoms of thickening or hardening of the skin. The Gd concentrations in the skin, liver, lung, and heart were significantly lower in the Dotarem group than in the Omniscan group (P < 0.05). In the histopathological examinations, the Omniscan group showed increased cellularity in the dermis. A significant hyperintensity was observed in the Gd2O3@PCD-treated rats compared to the Dotarem and Omniscan groups in the liver, heart, and lung.Compared to conventional Gd-based CAs, the novel metabolically Gd2O3@PCD with increased SNR, biosafety, and a considerably lower probability of developing NSF, has potential applicability for diagnosing patients with renal diseases in clinical MR Molecular Imaging (MRMI).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call