Abstract

Finding high-performance, low-cost, efficient catalysts for oxygen reduction reactions (ORR) is essential for sustainable energy conversion systems. Herein, highly efficient and durable iron (Fe) and cobalt (Co)-supported nitrogen (N) and sulfur (S) co-doped three-dimensional carbon nanofibers (FeCo-N, S@CNFs) were synthesized via electrospinning followed by carbonization. The as-prepared FeCo-N,S@CNFs served as efficient ORR catalysts in alkaline 0.1 m KOH solutions that were N2 and O2 -saturated. The experimental results revealed that FeCo-N,S@CNFs were highly active ORR catalysts with defect-rich active pyridinic N and pyrrolic N and metal bonds to N and S atom sites, which enhanced the ORR activity. FeCo-N,S@CNFs exhibited a high onset potential (Eonset =0.89 V) and half-wave potential (E1/2 =0.85 V), similar to the electrocatalytic activity of commercial Pt/C. Additionally, the durability of the as-prepared FeCo-N,S@CNFs catalysts was maintained for 14 h with long-term stability and high tolerance to methanol stability, accounting for their excellent catalytic ability. Furthermore, Co-N@CNFs, Fe-N@CNFs, and varying Fe and Co ratios were compared with those of FeCo-N,S@CNFs. Synergistic interactions between metals and heteroatoms were believed to play a significant role in enhancing the ORR activity. Owing to their excellent catalytic reduction ability, the as-prepared FeCo-N,S@CNFs can be widely used in battery-based systems and replace commercial Pt/C in fuel cell applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.