Abstract

With the developments in computer hardware technology, studies in the fields of computer vision and artificial intelligence has accelerated. However, the number of areas where autonomous systems are used has also increased. Among these areas are unmanned aerial vehicles, which are one of the most important parameters of today's military technology. In this study, which includes two different scenarios, we aimed to improve the vision capabilities of unmanned aerial vehicles based on artificial intelligence. Within the scope of Scenario-1, the U-Net model suitable for binary semantic segmentation method was trained with the help of images taken by unmanned aerial vehicle camera. Within the scope of Scenario-2, which is designed for moving or stationary vehicle detection, the U-Net model is trained in accordance with multi-class semantic segmentation method. In all these training processes, a publicly available dataset was used. The model trained for Scenario-1 reached mean Intersection over Union (mIoU) value of 84.3%, while the model trained for Scenario-2 reached 79.7% mIoU. In this study, approaches were shared about the use of high-resolution images in model training and testing stages. Applying such studies in the field can help improve precision and reliability in arms industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.