Abstract

Endogenous and environmental neurotoxins are among the suspected causes of the loss of dopaminergic (DA) neurons in Parkinson's disease (PD). Non‐steroidal anti‐inflammatory drugs (NSAIDs) reduce inflammation by inhibiting cyclooxygenase (COX)‐dependent synthesis of prostaglandins (PG) from arachidonic acid. NSAIDs decrease the incidence of Alzheimer's disease, but little is known about their potential benefit for PD. Therefore, we examined whether NSAIDs could protect DA neurons from neurotoxic insults. NSAIDs can protect DA neurons against excitotoxicity (Casper et al. 2000), and against 6‐hydroxydopamine (6‐OHDA) toxicity (Carrasco et al. 2001). Here, we compared in primary mesencephalic/DA neuron cultures the effect of NSAIDs on the toxicity of 1‐methyl‐phenylpyridinium (MPP+) or 6‐OHDA. 6‐OHDA significantly (*p < 0.0001) increased PG production, whereas MPP+ did not (p < 0.05). We then compared the competitive/unspecific COX inhibitors ibuprofen and naproxen and the noncompetitive/unspecific inhibitor acetylsalicylic acid (ASA, aspirin) for their ability to protect DA neurons against either 6‐OHDA or MPP+ toxicity. Interestingly, all three nonselective COX inhibitors protected DA neurons in cultures against both 6‐OHDA and MPP+ (p < 0.05), despite the difference in PG induction by 6‐OHDA vs. MPP+. The selective COX‐2 inhibitor NS398 did protect DA neurons against 5 μm MPP+ (*p < 0.05), but failed to protect DA neurons against 5 μm 6‐OHDA (p < 0.05). Our results suggest that COX‐inhibitors may have neuroprotective benefits unrelated to inhibition of PG synthesis, and that 6‐OHDA and MPP+ have partially overlapping mechanisms of neurodegeneration possibly involving COX activity.Acknowledgement: Supported, in part, by the International Federation for Parkinson's disease, NY, NY.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.