Abstract

The endothelium-derived hyperpolarizing factor (EDHF)-type relaxation in mesenteric small arteries from 21 week old Zucker lean (ZL) and Zucker diabetic fatty (ZDF) rats was investigated using (6,7-dichloro-1H-indole-2,3-dione 3-oxime) (NS309), a potent activator of small-conductance, calcium-activated potassium channel (SK(Ca)) and intermediate-conductance, calcium-activated potassium channel (IK(Ca)). In the presence of inhibitors of cyclooxygenase and nitric oxide synthase [indomethacin and N(omega)-nitro-L-arginine methyl ester (l-NAME), respectively], acetylcholine (ACh)-induced hyperpolarization and EDHF-type relaxation were investigated under isometric conditions in the wire myograph using 0.5 and 1 microM NS309 and/or selective blockers of SK(Ca) and IK(Ca) channels. Membrane potential was recorded with glass microelectrodes, and changes in the intracellular calcium concentration of endothelial cells were visualized by confocal microscopy. SK(Ca) expression was assessed by Western blotting. In arteries from ZDF rats, ACh-induced relaxation and membrane hyperpolarization were attenuated and, compared with arteries from ZL rats, NS309 was less potent at causing relaxation. Incubation with 0.5 microM NS309 did not increase ACh-induced relaxation in arteries from ZDF rats significantly. However, 1 microM NS309 restored it (both in the absence and in the presence of indomethacin and l-NAME) without changing endothelial intracellular calcium concentration. The restored EDHF-type relaxation was more sensitive to TRAM-34 (1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole) (1 microM) than to apamin. Expression of the SK(Ca) channel was unaltered. The attenuated EDHF-type relaxation in mesenteric small arteries from ZDF rats can be restored by NS309 without changes in the intracellular calcium concentration of endothelial cells. These results may have clinical implications for the treatment of endothelial dysfunction in overweight type 2 diabetic patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.