Abstract

BackgroundRice stripe virus (RSV) belongs to the genus Tenuivirus. It is transmitted by small brown planthoppers in a persistent and circulative-propagative manner and causes rice stripe disease (RSD). The NS3 protein of RSV, encoded by the viral strand of RNA3, is a viral suppressor of RNA silencing (VSR). NS3 plays a significant role in viral infection, and NS3-transgenic plants manifest resistance to the virus.MethodsThe stability and availability of NS3 produced by transgenic Nicotiana benthamiana was investigated by northern blot analysis. The accumulation of virus was detected by western blot analysis. Transcriptome sequencing was used to identify differentially expressed genes (DEGs) in NS3-transgenic N. benthamiana.ResultsWhen the host plants were inoculated with RSV, symptoms and viral accumulation in NS3-transgenic N. benthamiana were reduced compared with the wild type. Transcriptome analysis identified 2533 differentially expressed genes (DEGs) in the NS3-transgenic N. benthamiana, including 597 upregulated genes and 1936 downregulated genes. These DEGs were classified into three Gene Ontology (GO) categories and were associated with 43 GO terms. KEGG pathway analysis revealed that these DEGs were involved in pathways associated with ribosomes (ko03010), photosynthesis (ko00195), photosynthesis-antenna proteins (ko00196), and carbon metabolism (ko01200). More than 70 DEGs were in these four pathways. Twelve DEGs were selected for RT-qPCR verification and subsequent analysis. The results showed that NS3 induced host resistance by affecting host gene expression.ConclusionNS3, which plays dual roles in the process of infection, may act as a VSR during RSV infection, and enable viral resistance in transgenic host plants. NS3 from RSV affects the expression of genes associated with ribosomes, photosynthesis, and carbon metabolism in N. benthamiana. This study enhances our understanding of the interactions between VSRs and host plants.

Highlights

  • Rice stripe virus (RSV) belongs to the genus Tenuivirus

  • Symptoms and molecular characteristics of NS3transgenic N. benthamiana after infection with RSV We investigated the stability of NS3 expression in transgenic N. benthamiana by northern blot analysis, and the results showed that NS3 was transcribed in plants from different transgenic lines (NS3ā€“5, NS3ā€“6, and NS3ā€“9) (Fig. 1b)

  • The results showed that only 35.29% of NS3-transgenic N. benthamiana plants were infected with RSV, compared to 47.06% of wild-type N. benthamiana plants (Fig. 1c)

Read more

Summary

Introduction

Rice stripe virus (RSV) belongs to the genus Tenuivirus It is transmitted by small brown planthoppers in a persistent and circulative-propagative manner and causes rice stripe disease (RSD). The NS3 protein of RSV, encoded by the viral strand of RNA3, is a viral suppressor of RNA silencing (VSR). Rice stripe virus (RSV) belongs to the genus Tenuivirus, and is characterized by transovarian transmission in a persistent, circulative-propagative manner by the small brown planthopper (Laodelphax striatellus) [1]. RNA3 encodes a nonstructural protein that has been identified as a viral suppressor of RNA silencing (VSR; NS3, 23.9 kDa), and a nucleocapsid protein (CP, 35 kDa)[7], which are derived independently from vRNA3 and vcRNA3 [8]. RNA3 encodes a nonstructural protein that has been identified as a viral suppressor of RNA silencing (VSR; NS3, 23.9 kDa), and a nucleocapsid protein (CP, 35 kDa)[7], which are derived independently from vRNA3 and vcRNA3 [8]. vRNA4 and vcRNA4 encode a

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.