Abstract
Recent work has shown how on-shell three-point amplitudes in gauge theory and gravity, representing the coupling to massive particles, correspond in the classical limit to the curvature spinors of linearised solutions. This connection, made explicit via the KMOC formalism in split metric signature, turns the double copy of scattering amplitudes into the double copy of classical solutions. Here, we extend this framework to the universal massless sector of supergravity, which is the complete double copy of pure gauge theory. Our extension relies on a Riemann-Cartan curvature incorporating the dilaton and the B-field. In this setting, we can determine the most general double copy arising from the product of distinct gauge theory solutions, say a dyon and sqrt{mathrm{Kerr}} . This gives a double-copy interpretation to gravity solutions of the type Kerr-Taub-NUT-dilaton-axion. We also discuss the extension to heterotic gravity. Finally, we describe how this formalism for the classical double copy relates to others in the literature, namely (i) why it is an on-shell momentum space analogue of the convolutional prescription, and (ii) why a straightforward prescription in position space is possible for certain vacuum solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.